Musculoskeletal morphology and regionalization within the dorsal and anal fins of bluegill sunfish (Lepomis macrochirus).
نویسندگان
چکیده
Ray-finned fishes actively control the shape and orientation of their fins to either generate or resist hydrodynamic forces. Because of the emergent mechanical properties of their segmented, bilaminar fin rays (lepidotrichia), and actuation by multiple muscles, fish can control the rigidity and curvature of individual rays independently, thereby varying the resultant forces across the fin surfaces. Expecting that differences in fin-ray morphology should reflect variation in their mechanical properties, we measured several musculoskeletal features of individual spines and rays of the dorsal and anal fins of bluegill sunfish, Lepomis macrochirus, and assessed their mobility and flexibility. We separated the fin-rays into four groups based on the fin (dorsal or anal) or fin-ray type (spine or ray) and measured the length of the spines/rays and the mass of the three median fin-ray muscles: the inclinators, erectors and depressors. Within the two ray groups, we measured the portion of the rays that were segmented vs. unsegmented and branched vs. unbranched. For the majority of variables tested, we found that variations between fin-rays within each group were significantly related to position within the fin and these patterns were conserved between the dorsal and anal rays. Based on positional variations in fin-ray and muscle parameters, we suggest that anterior and posterior regions of each fin perform different functions when interacting with the surrounding fluid. Specifically, we suggest that the stiffer anterior rays of the soft dorsal and anal fins maintain stability and keep the flow across the fins steady. The posterior rays, which are more flexible with a greater range of motion, fine-tune their stiffness and orientation, directing the resultant flow to generate lateral and some thrust forces, thus acting as an accessory caudal fin.
منابع مشابه
Median fin function during the escape response of bluegill sunfish (Lepomis macrochirus). I: Fin-ray orientation and movement.
The fast-start escape response is critically important to avoid predation, and axial movements driving it have been studied intensively. Large median dorsal and anal fins located near the tail have been hypothesized to increase acceleration away from the threat, yet the contribution of flexible median fins remains undescribed. To investigate the role of median fins, C-start escape responses of ...
متن کاملHydrodynamics of the escape response in bluegill sunfish, Lepomis macrochirus.
Escape responses of fishes are one of the best characterized vertebrate behaviors, with extensive previous research on both the neural control and biomechanics of startle response performance. However, very little is known about the hydrodynamics of escape responses, despite the fact that understanding fluid flow patterns during the escape is critical for evaluating how body movement transfers ...
متن کاملMedian fin function during the escape response of bluegill sunfish (Lepomis macrochirus). II: Fin-ray curvature.
Although kinematic analysis of individual fin rays provides valuable insight into the contribution of median fins to C-start performance, it paints an incomplete picture of the complex movements and deformation of the flexible fin surface. To expand our analysis of median fin function during the escape response of bluegill sunfish (Lepomis macrochirus), patterns of spanwise and chordwise curvat...
متن کاملVariation in fast-start performance within a population of polyphenic bluegill (Lepomis macrochirus).
Bluegill sunfish Lepomis macrochirus exhibit intraspecific variation in their morphology and swimming performance based on habitat. The pelagic form has a relatively streamlined, fusiform body shape associated with greater steady-state swimming speed and energy economy. In contrast, littoral bluegill have deeper bodies with fins located farther from their center of mass to enhance maneuverabili...
متن کاملFin ray sensation participates in the generation of normal fin movement in the hovering behavior of the bluegill sunfish (Lepomis macrochirus).
For many fish species, the pectoral fins serve as important propulsors and stabilizers and are precisely controlled. Although it has been shown that mechanosensory feedback from the fin ray afferent nerves provides information on ray bending and position, the effects of this feedback on fin movement are not known. In other taxa, including insects and mammals, sensory feedback from the limbs has...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of morphology
دوره 273 4 شماره
صفحات -
تاریخ انتشار 2012